Homework 2

1. Sum of an Interesting Random Variable. (20 points) Let X be the random variable over the set of all natural numbers $\{1, 2, 3, ...\}$ such that, for any natural number i, we have

$$\mathbb{P}\left[\mathbb{X}=i\right]=2^{-i}.$$

Let $\mathbb{S}_n = \mathbb{X}^{(1)} + \mathbb{X}^{(2)} + \cdots + \mathbb{X}^{(n)}$, where $\mathbb{X}^{(1)}, \mathbb{X}^{(2)}, \dots, \mathbb{X}^{(n)}$ are independent and identical to \mathbb{X} .

- (5 points) What is $\mathbb{E}[\mathbb{S}_n]$?
- (15 points) Upper-bound the following probability

$$\mathbb{P}\left[\mathbb{S}_n - \mathbb{E}\left[\mathbb{S}_n\right] \geqslant E\right]$$

- 2. Coin-tossing: Word Problem. (20 points) Suppose you have access to a coin that outputs heads with probability 1/2 and outputs tails with probability 1/2. Let \mathbb{S}_n represent the *number of coin tosses needed* to see exactly n heads.
 - (5 points) What is $\mathbb{E}[\mathbb{S}_n]$?
 - (15 points) Upper-bound the following probability

$$\mathbb{E}\left[\mathbb{S}_n - \mathbb{E}\left[\mathbb{S}_n\right] \geqslant E\right]$$

- 3. Sum of Poisson. (25 points) Let \mathbb{Y} be the random variable over sample space $\{0,1,2,\dots\}$ such that $\Pr[\mathbb{Y}=k]=\frac{e^{-\mu}\mu^k}{k!}$. This is the Poisson distribution with parameter μ .
 - (3 points) Prove that the mean of a Poisson distribution with parameter μ is equal to μ .
 - (7 points) Prove that if \mathbb{Y}_1 and \mathbb{Y}_2 are independent Poisson distributions with parameters μ_1 and μ_2 respectively, then the random variable $\mathbb{Y}_1 + \mathbb{Y}_2$ is also a Poisson distribution with parameter $\mu_1 + \mu_2$.
 - (15 points) Let \mathbb{X} be the Poisson distribution with mean m/n. Let $\mathbb{S}_n := \mathbb{X}^{(1)} + \mathbb{X}^{(2)} + \cdots + \mathbb{X}^{(n)}$, where $\mathbb{X}^{(1)}, \mathbb{X}^{(2)}, \ldots, \mathbb{X}^{(n)}$ are all independent and identical to \mathbb{X} . Upper-bound the following probability

$$\mathbb{P}\left[\mathbb{S}_n - \mathbb{E}\left[\mathbb{S}_n\right] \geqslant E\right]$$

4. Empty Bins in the Poisson Model. (20 points) Let \mathbb{X} represent the Poisson distribution with mean m/n. Let \mathbb{Y} be the indicator variable $\mathbf{1}_{\{\mathbb{X}=0\}}$. That is, \mathbb{Y} is the random variable that is 1 if and only if the random variable \mathbb{X} is 0.

Let $\mathbb{S}_n = \mathbb{Y}^{(1)} + \mathbb{Y}^{(2)} + \ldots + \mathbb{Y}^{(n)}$, where $\mathbb{Y}^{(1)}, \mathbb{Y}^{(2)}, \ldots, \mathbb{Y}^{(n)}$ are independent and identical to \mathbb{Y} .

- (5 points) What is $\mathbb{E}[\mathbb{S}_n]$?
- (15 points) Upper-bound the following probability

$$\mathbb{P}\left[\mathbb{S}_n - \mathbb{E}\left[\mathbb{S}_n\right] \geqslant E\right]$$

5. **Another proof for Chernoff bound** (15 points) Consider the following simple type of Chernoff Bound:

Suppose $\mathbb{S}_n = \sum_{i=1}^n \mathbb{X}^{(i)}$ where $\mathbb{X}^{(1)}, \mathbb{X}^{(2)}, \dots, \mathbb{X}^{(n)}$ are i.i.d Bernoulli random variables such that, $\mathbb{X} = \text{Bern}(p)$. Then, for any $\varepsilon > 0$, the following Chernoff bound states:

$$\Pr[\mathbb{S}_n \geqslant n(p+\varepsilon)] \leqslant e^{-nD_{\mathrm{KL}}(p+\varepsilon,p)}$$

To prove the inequality above, we define i.i.d Bernoulli random variables $\mathbb{X}'^{(1)}, \mathbb{X}'^{(2)}, \dots, \mathbb{X}'^{(n)}$ such that $\mathbb{X}' = \text{Bern}(p + \varepsilon)$. Define $\mathbb{S}'_n := \sum_{i=1}^n \mathbb{X}'^{(i)}$.

- (3 points) Define $h_k := \frac{\Pr[\mathbb{S}'_n = k]}{\Pr[\mathbb{S}_n = k]}$ and obtain a simplified expression for h_k .
- (7 points) For any $k \geqslant n(p+\varepsilon)$, prove that $h_k \geqslant e^{n\mathcal{D}_{\mathrm{KL}}(p+\varepsilon,p)}$.
- (5 points) Use the inequality above to prove the Chernoff bound

$$\Pr[\mathbb{S}_n \geqslant n(p+\varepsilon)] \leqslant e^{-nD_{\mathrm{KL}}(p+\varepsilon,p)}.$$

Name: Type your name here

6. Random Walk in 2-D. (20 points) Suppose an insect starts at (0,0) at time t=0. At time t, its position is described by $(\mathbb{X}(t), \mathbb{Y}(t))$. At the next time step t+1, the insect uniformly at random moves to (a) $(\mathbb{X}(t)+1, \mathbb{Y}(t))$, $(\mathbb{X}(t)-1, \mathbb{Y}(t))$, $(\mathbb{X}(t), \mathbb{Y}(t)+1)$, or $(\mathbb{X}(t), \mathbb{Y}(t)-1)$. State (5 points) and prove (15 points) a theorem that bounds how far from the origin the insect is at time t=n.

Solution.

Collaborators: