Homework 2

1. Sum of an Interesting Random Variable. (20 points) Let \mathbb{X} be the random variable over the set of all natural numbers $\{1,2,3, \ldots\}$ such that, for any natural number i, we have

$$
\mathbb{P}[\mathbb{X}=i]=2^{-i}
$$

Let $\mathbb{S}_{n}=\mathbb{X}^{(1)}+\mathbb{X}^{(2)}+\cdots+\mathbb{X}^{(n)}$, where $\mathbb{X}^{(1)}, \mathbb{X}^{(2)}, \ldots, \mathbb{X}^{(n)}$ are independent and identical to \mathbb{X}.

- (5 points) What is $\mathbb{E}\left[\mathbb{S}_{n}\right]$?
- (15 points) Upper-bound the following probability

$$
\mathbb{P}\left[\mathbb{S}_{n}-\mathbb{E}\left[\mathbb{S}_{n}\right] \geqslant E\right]
$$

Solution.

2. Coin-tossing: Word Problem. (20 points) Suppose you have access to a coin that outputs heads with probability $1 / 2$ and outputs tails with probability $1 / 2$. Let \mathbb{S}_{n} represent the number of coin tosses needed to see exactly n heads.

- (5 points) What is $\mathbb{E}\left[\mathbb{S}_{n}\right]$?
- (15 points) Upper-bound the following probability

$$
\mathbb{E}\left[\mathbb{S}_{n}-\mathbb{E}\left[\mathbb{S}_{n}\right] \geqslant E\right]
$$

Solution.

3. Sum of Poisson. (25 points) Let \mathbb{Y} be the random variable over sample space $\{0,1,2, \ldots\}$ such that $\operatorname{Pr}[\mathbb{Y}=k]=\frac{e^{-\mu} \mu^{k}}{k!}$. This is the Poisson distribution with parameter μ.

- (3 points) Prove that the mean of a Poisson distribution with parameter μ is equal to μ.
- (7 points) Prove that if \mathbb{Y}_{1} and \mathbb{Y}_{2} are independent Poisson distributions with parameters μ_{1} and μ_{2} respectively, then the random variable $\mathbb{Y}_{1}+\mathbb{Y}_{2}$ is also a Poisson distribution with parameter $\mu_{1}+\mu_{2}$.
- (15 points) Let \mathbb{X} be the Poisson distribution with mean m / n. Let $\mathbb{S}_{n}:=\mathbb{X}^{(1)}+\mathbb{X}^{(2)}+$ $\cdots+\mathbb{X}^{(n)}$, where $\mathbb{X}^{(1)}, \mathbb{X}^{(2)}, \ldots, \mathbb{X}^{(n)}$ are all independent and identical to \mathbb{X}. Upper-bound the following probability

$$
\mathbb{P}\left[\mathbb{S}_{n}-\mathbb{E}\left[\mathbb{S}_{n}\right] \geqslant E\right]
$$

Solution.

4. Empty Bins in the Poisson Model. (20 points) Let \mathbb{X} represent the Poisson distribution with mean m / n. Let \mathbb{Y} be the indicator variable $\mathbf{1}_{\{\mathbb{X}=0\}}$. That is, \mathbb{Y} is the random variable that is 1 if and only if the random variable \mathbb{X} is 0 .
Let $\mathbb{S}_{n}=\mathbb{Y}^{(1)}+\mathbb{Y}^{(2)}+\ldots+\mathbb{Y}^{(n)}$, where $\mathbb{Y}^{(1)}, \mathbb{Y}^{(2)}, \ldots, \mathbb{Y}^{(n)}$ are independent and identical to \mathbb{Y}.

- (5 points) What is $\mathbb{E}\left[\mathbb{S}_{n}\right]$?
- (15 points) Upper-bound the following probability

$$
\mathbb{P}\left[\mathbb{S}_{n}-\mathbb{E}\left[\mathbb{S}_{n}\right] \geqslant E\right]
$$

Solution.

5. Another proof for Chernoff bound (15 points) Consider the following simple type of Chernoff Bound:

Suppose $\mathbb{S}_{n}=\sum_{i=1}^{n} \mathbb{X}^{(i)}$ where $\mathbb{X}^{(1)}, \mathbb{X}^{(2)}, \ldots, \mathbb{X}^{(n)}$ are i.i.d Bernoulli random variables such that, $\mathbb{X}=\operatorname{Bern}(p)$. Then, for any $\varepsilon>0$, the following Chernoff bound states:

$$
\operatorname{Pr}\left[\mathbb{S}_{n} \geqslant n(p+\varepsilon)\right] \leqslant e^{-n \mathrm{D}_{\mathrm{KL}}(p+\varepsilon, p)}
$$

To prove the inequality above, we define i.i.d Bernoulli random variables $\mathbb{X}^{\prime(1)}, \mathbb{X}^{\prime(2)}, \ldots, \mathbb{X}^{\prime(n)}$ such that $\mathbb{X}^{\prime}=\operatorname{Bern}(p+\varepsilon)$. Define $\mathbb{S}_{n}^{\prime}:=\sum_{i=1}^{n} \mathbb{X}^{\prime(i)}$.

- (3 points) Define $h_{k}:=\frac{\operatorname{Pr}\left[\mathbb{S}_{n}^{\prime}=k\right]}{\operatorname{Pr}\left[\mathbb{S}_{n}=k\right]}$ and obtain a simplified expression for h_{k}.
- (7 points) For any $k \geqslant n(p+\varepsilon)$, prove that $h_{k} \geqslant e^{n \mathrm{D}_{\mathrm{KL}}(p+\varepsilon, p)}$.
- (5 points) Use the inequality above to prove the Chernoff bound

$$
\operatorname{Pr}\left[\mathbb{S}_{n} \geqslant n(p+\varepsilon)\right] \leqslant e^{-n \mathrm{D}_{\mathrm{KL}}(p+\varepsilon, p)} .
$$

Solution.

6. Random Walk in 2-D. (20 points) Suppose an insect starts at $(0,0)$ at time $t=0$. At time t, its position is described by $(\mathbb{X}(t), \mathbb{Y}(t))$. At the next time step $t+1$, the insect uniformly at random moves to (a) $(\mathbb{X}(t)+1, \mathbb{Y}(t)),(\mathbb{X}(t)-1, \mathbb{Y}(t)),(\mathbb{X}(t), \mathbb{Y}(t)+1)$, or $(\mathbb{X}(t), \mathbb{Y}(t)-1)$. State (5 points) and prove (15 points) a theorem that bounds how far from the origin the insect is at time $t=n$.

Solution.

Collaborators :

